
ABSTRACT
The Attention Deficit Hyperactivity Disorder (ADHD) is character-

ized by a difficulty in processing feedback regarding the current 
state of the concentration of an individual. One of the main lines 
of research in the treatment of ADHD involved the employment of 
electroencephalography (EEG) Neurofeedback as a means of pro-
viding a quantification and representation of the concentration lev-
el. The current investigation constitutes a first step in developing 
an application of Remotely Piloted Aircraft Systems aiding in the 
treatment of ADHD employing a Brain Computer Interface, based 
on the measurements detected by an EEG sensor. These measure-
ments modify the flight height of a quadrotor according to the sig-
nal evaluation. In order to develop the proposed system, a real-time 
mechanism for processing and classifying the electrophysiological 
artifacts has been developed. Finally, the processed signals are then 
fed into the aircraft controller, modifying the aircraft flight and thus 
providing the desired feedback to the user.

Key words: BCI; drone; RPAS; EEG; ADHD; Neurofeedback; ma-
chine learning; neural network.

 
1. INTRODUCTION

Nowadays the Brain Computer Interface (BCI) technologies are in 
full swing, but the idea was born many years ago. The first scientist 
who demonstrated that the brain produces electrical current was 
dated on 1920s [1]. In fact, the concept of electroencephalogra-
phy (EEG) was born nine years after that discovery [2]. From that 
point, the EEG has become a tool to better understand the neural 
processes, pathologies and, also, for studying correlations of cogni-
tive functions. Evolving from this concept, one of the main lines of 
research in EEG has sought to perform an adequate processing of 
the information contained in these signals so as to develop a com-
munication channel between a human brain and the environment 
[3]. This reference showed that certain features of EEG could be 
controlled on purpose by a human after the corresponding training, 
which resulted in the birth of Neurofeedback. 

In last 30 years, the field of BCI has drawn the attention of an 
increasing number of researchers. By the way, the rise of the capac-
ities of calculation processing of computers has caused that ma-
chine learning techniques are considered a key tool for classifying 
EEG signals. There are many different strategies to classify signals 
based on machine learning algorithms,  but one of the most relevant 
strategies is deep learning [4]. This strategy has limitations, but its 
usage is extended because it helps the researcher to process a big 
data set and extract conclusions from that in a shorter period. 

The applications of BCI are so diverse and from different nature 
[5]. Focusing in the treatment of ADHD through Neurofeedback ap-
plication [6], some studies indicate that this technique can comple-
ment perfectly the habitual pharmacological approximation of this 
disorder [7]. In fact, several patented and commercial products deal 
with the use of Neurofeedback for this and other proposals, both 
medical and for entertainment [8].   

Precisely, the combination of BCI capacities with the versatility of 
applications associated to Remoted Piloted Aircraft Systems (RPAS), 
has caused that the researching on the viability of controlling a 
drone making use of BCI techniques has grown during last years 
[9]. Therefore, the study proposed in this paper is the first step to 
design a Neurofeedback application, specifically developed for the 
treatment of ADHD, starting from the state of the art of the current 
BCI technologies. The use of Neurofeedback for the treatment of 
ADHD is not extended, neither the given feedback by the existing 
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  RESUMEN
•	 El Trastorno por Déficit de Atención e Hiperactividad (TDAH) se caracteriza por la 

dificultad en procesar la retroalimentación del estado actual de concentración de 
un individuo. Una de las principales líneas de investigación en el tratamiento del 
TDAH es el uso del Neurofeedback electroencefalográfico (EEG) como un medio 
de proporcionar una cuantificación y representación del nivel de concentración. 
Esta investigación constituye un primer paso en el desarrollo de una aplicación 
de un sistema aéreo no tripulado (RPAS) que ayude en el tratamiento del TDAH 
haciendo uso de una interfaz cerebro - ordenador, que se base en las medidas 
detectadas por un sensor EEG. Estas medidas modifican la altura de vuelo de 
un cuadricóptero de acuerdo con la evaluación de la señal. Para desarrollar el 
sistema propuesto, se ha diseñado una aplicación en tiempo real para procesar 
y clasificar los artefactos electrofisiológicos. Finalmente, las señales procesadas 
son enviadas al controlador de la aeronave, que modifica la altura de la misma 
función la deseada retroalimentación al usuario.

•	 Palabras Clave:  BCI; drone; RPAS; EEG; TDAH; Neurofeedback; machine learning; 
red neuronal.



technologies is mature yet. Thus, this study proposes to give the 
feedback through the control of a quadrotor RPAS. Concretely, the 
feedback corresponds to the height hover flight of the quadrotor, 
which changes depending on the level of focus of a given patient. 
This paper presents how the process of the signal needs to be car-
ried out in order to control the drone. Because of this study is not 
focused on the neurological part of the project, a similar brain signal 
than the concentration one has been selected in order to develop 
the study. It has been decided to choose the alpha rhythm because 
it has already used for Neurofeedback applications [10], and some 
studies reveal that these frequencies are activated while the subject 
is doing cognitive tasks, which is directly related with the level of 
focus of the patient [11]. In addition, alpha rhythm can be stimulat-
ed closing the eyes, thus it is an easy way to check the validation of 
the application developed in this study. 

 
2. PROCESSING AND CLASSIFICATION STRATEGIES

2.1. BRAIN COMPUTER INTERFACE METHODOLOGIES 
TA Brain Computer Interface is a system that allows a human to 

interact with the environment by control signals generated through 
electroencephalographic activity. To do that, these systems are 
based on five stages of processing: signal acquisition, signal im-
provement, feature extraction, classification and transmission to the 
control interface.

The first stage of acquiring the signal oversees receiving the brain 
signals through certain electronic equipment that allows to get the 
physiologic phenomena that the study is focused on. Among several 
techniques, the EEG is the most used because of it has lower risk for 
the individuals to whom it is applied, its higher temporal resolution 
and its relatively lower cost. The main drawback is the low quality 
of the signal because the origin of the signals is in the neurons and 
they must cross the cranium, the scalp and other layers.

The next stage is to improve the quality of the signal. The goal is 
to erase all the effects not directly related with the EEG activity, so 
that the EEG signal is clear. This stage becomes more difficult if the 
frequencies of the noise fonts and EEG signals are in the same band. 
Part of this noise can be reduced making use of an ultrasound gel, 
that improves the electrical conductance between the human skin 
and the electrodes. 

The next step of a BCI application is the feature extraction. The 
aim of this stage is identifying the discriminative information in 
the brain signals and generating a joint of characteristic parameters 
that describe that information. These parameters are called features, 
and their selection and consequent extraction is not an easy task. 

Once the features have been extracted, they must be passed to a 
classifier algorithm. It tries to recognise the kind of brain activity 
according to the features selected previously. The classifiers algo-
rithms need to be trained in order to adjust the internal parameters 
for obtaining more accustomed results. 

The final stage of a BCI application is to send the information to 
the control interface based on the results of the classification phase. 
This stage is specific for each application. 

Figure 1 sums the BCI application developed in this study. The di-
agram represents the control loop through which the brain signal 
can control a system, in this case, a quadcopter. The loop is closed 
when the individual perceives the movement of the RPAS according 
the kind of EEG signal generated in his brain. This signal suffers a 
pre-processing phase in order to allow to better extract the features. 
After that, an algorithm decides if the signal contains the features in 
enough quantity and it classifies the signal in different categories. 
Depending the category reached, the command and control block 
sends the corresponding orders to the quadcopter. 

This study has been carried out with the aid of an open source cer-
tified hardware called OpenBCI Cyton [12]. The final objective is to 
develop an application to identify if the subject is concentrated or 
not, in order to give the feedback to him/her. As it has been exposed 
in the Introduction, the team has decided to use the alpha-signal as 
testing signal, because its similarities with the concentration one. 
The alpha-signal is excited when the subject closes his/her eyes, so 
this process has two main advantages: the signal is like concentra-
tion signal and it is easy to label in the training phase, just regis-
tering if the subject has his/her eyes opened or closed. When the 

alpha-signal is excited, the energy associated to its frequency band, 
between 8 and 12 Hz, increases. In order to measure the alpha-sig-
nal with the board, it is only necessary to use one electrode located 
on the back zone of the cranium. 

2.2.	 EEG SIGNAL PRE-PROCESSING
The application must identify if the channel is measuring an in-

crease of alpha-signal to classify if the subject has the eyes opened 
or closed. In order to develop a real-time application, the classifi-
cation must be based on the last N data samples received by the 
sensor. N should be as low as possible, in order to reduce the width 
of the time window that is used for the analysis of the signal. On the 
other hand, N should be large enough so as to represent the relevant 
features of the EEG signal. The drawback is that the alpha-signal is a 
low frequency EEG effect, so it is necessary to register enough data 
to be identified. The most ambitious objective is that the program be 
able to process the classification algorithm in a lower time than the 
next sample is received, that is the maximum overlapping. 

Once the overlapping degree has been selected, the next step is to 
choose the algorithm to pre-process the signal and extract the fea-
tures. In this study, the pre-processing has been carried out through 
Wavelet Transform. The main difference with Fourier Transform is 
that Wavelet Transform uses functions that are well localized in 
both the time and the frequency domains. Amongst the possibilities, 
it has decided to use the Morlet Wavelet. This wavelet is composed 
by a complex exponential function multiplied by a Gaussian window 
(Figure 2). 

2.3. CLASSIFICATION AND TRAINING
The last step is to determine the number of wavelet functions used 

to extract the features and their central frequencies. It has been de-
cided to take a distribution of frequencies that follows a logarithm 
scale. This rule is not arbitrary such as it has been demonstrated 
that several physical systems follows this behaviour. Experimentally, 
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Fig. 1: Block diagram for BCI application developed in this paper



commands the drone to hover at a determined height. On the oth-
er hand, if the subject closes his eyes, the drone must climb until 
reached certain height and stay there while the subject has the eyes 
closed. Thus, the dynamic system has been developed assuming that 
the movement of the aircraft has just one degree of freedom, which 
is the altitude of the drone h. The dynamic system is based on the 
schema pictured in Figure 3, where W is the weight of the aircraft, T 
is the total thrust of the motors under the hypothesis that the four 
of them developed the same thrust in this simplified unidirectional 
model, and D is the aerodynamic drag of the drone. Thus, it is possi-
ble to say that the thrust only depends on the vertical speed v=dh/
dt and the control parameter. It has been decided to take as control 
parameter the revolutions of the motor, n.

In the case of this study, the drone is a quadrotor manufactured by 
SOLARDRON, which is a small Spanish company. Therefore, the final 
simplified dynamic equation for this drone is:

dΔv/dt = -0.691Δv + 0.204Δn                                                    (1)

where the units of Δv are m/s and in the case of Δn rev/s. The 
actual model of a drone in order to control the real aircraft must be 
more detailed. However, this model is enough for the objectives of 
this study, because only a simulation of the dynamic of the quadro-
tor is enough to demonstrate the viability of the research.

Once the model is reached, it is necessary to develop a system 
whose objective is to guarantee the vertical position of the aircraft 
depending on the brain signal. This autopilot has been designed 
through the PID strategy, which generates control commands from 
the addition of three terms: Proportional, Integral and Derivative. 
In the case of the quadrotor considered in this study, the height 
associated to opened eyes is 1 meter above ground and to closed 
eyes is 2 meters. Thus, the resultant values of the PID coefficients 
are: kp=35, kI=5 and kD=20. 

 

it has been decided to extract 26 frequencies located in the band 
between 7.4 Hz and 42 Hz, where the alpha-signal is contained for 
all the people.

The strategy followed for classifying the signal based on the 26 
features extracted by the Wavelet Transform is training a neu-
ral network. This network used for classifying the brain signal 
has a typical architecture for pattern recognition problems in or-
der to classify inputs into a set of target categories. In this case, 
two categories has been selected: opened-eyes and closed-eyes. 
Because of the model requiring a numerical value of the out-
put, closed-eyes has been assigned to 1 and opened-eyes to 0.  

The main properties of the neural network selected for this study 
are the following:

•	 Pure feedforward scheme.
•	 26 inputs, 1 hidden layer with 10 neurons and 1 output.
•	 Hidden layer function transfer: hyperbolic tangent sigmoid 

function.
•	 Output function: soft max function.
•	 Sets: the samples are divided randomly into three sets: train-

ing (70%), validation (15%) and testing (15%).
•	 Training process: scaled conjugated gradient backpropaga-

tion.
•	 Objective function: cross-entropy error.
To sum up, the training process is as follows:
1.	 The electrodes are located and connected to the patient.
2.	 The application collects data for five minutes, alternating the 

subject opened-eyes and closed-eyes according to the indi-
cations of the program, in order to give enough data for the 
neural network training process.

3.	 The application extracts the features through the Wavelet 
Transform strategy.

4.	 The resultant features are used to train the neural network. 
Perhaps, several training processes are needed if the accuracy 
is not good enough.

After this training phase, the application is prepared to determine 
if the subject has the eyes opened or closed, according to the al-
pha-signal. This can be used to control a physical system. For in-
stance, this could be used to control a quadcopter drone flying in 
hover to increase its altitude. In this way, the system gives the sub-
ject a feedback of the state of his eyes, depending on the drone 
increases its altitude or not. 

3. SIMPLIFIED QUADROTOR DYNAMIC MODEL, COMMAND 
AND CONTROL

In order to demonstrate how to integrate the outputs of the clas-
sification process with the control of a drone, a simplified model 
of a quadrotor has been developed. The objective of the autopilot 
is to use the results of the classification to control the altitude of 
the aircraft. If the subject stays with the eyes opened, the autopilot 
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Fig. 2: Wavelet Morlet example

Fig. 3:  Schemae of the dynamic system representing the quadrotor

Fig. 3: Hybrid robot plant (dimensions in mm.). Stability
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4. RESULTS

4.1. CLASSIFICATION SUCCESS
The first aspect to analyze is the quality of the classification fol-

lowing the procedure exposed in this paper. For that proposal, it is 
necessary to explain the concept of confusion matrix. It is a table 
in which the rows represent the possible outputs reached by the 
neural network and the columns represent the actual output that 
may be reached. Therefore, when reached and target outputs coin-
cide, the network provide a positive estimation. However, if they do 
not coincide, the result corresponds to false estimations. The con-
fusion matrix provides the number and percentage of true positives, 
true negatives, false positives and false negatives. In the case of 
this study, there are only two possible outputs of the network: 0, 
corresponding to opened eyes, or 1, corresponding to closed eyes. 
The confusion matrix has been built with Matlab software, and it is 
showed in Figure 4 corresponding to that obtained after five min-
utes training.

Analyzing the values of the last row of the confusion matrix, it 
is possible to say that the model predicts in a worse way when 
the subject has his eyes closed than when he/she has his/her eyes 
opened. Anyway, both cases present an error under 10%. This last 
row measures the recall of the application.  On the other hand, the 
accuracy of each category is showed in the last column of the con-
fusion matrix. In this case, it is higher when the network predicts 
that the subject has his/her eyes closed than when it says that the 
eyes are opened. Finally, the last cell of the matrix with the back-
ground in blue represents an average success considering the recall 
and the accuracy.

These classification errors are acceptable from a neurological 
standpoint, because the brain signals are not “black or white”. There 
are many interference sources, interdependent processes, hence a 
certain degree of uncertainty is assumed. However, from the stand-
point of the control of the drone, these errors are more relevant. 
If the dynamic of the quadrotor is quick, which is this case, the 
variability of the results suppose that the aircraft is continuously 
going up and down so fast, in accordance with the output of the 
classification process (Figure 5). 

This behavior does not correspond to the speed of the brain pro-
cesses that are studied in this research. The alpha-signal associated 
to the state of the eyes changes slowly, so it is not expected that the 
drone can change its position very fast. Thus, one possibility is to 

  

 

include a low pass filter after the classification process. The transfer 
function of the filter needs to be selected considering also the dy-
namic of the quadrotor to be controlled. In this way, the commands 
sent to the aircraft will not be so abrupt and the movement of the 
drone will be in accordance with the signal brain behavior.

4.3. CLASSIFICATION DELAY
In line with the previous section, there is the time that the algo-

rithm needs to realize that the state of the eyes has changed. For 
measuring that, after training the network, several tests have been 
carried out registering the output of the algorithm and, simultane-
ously, filming a video of the face of the subject. Thus, a comparison 
between the real instant of opening or closing the eyes and the 
instant when the application decided that the state has changed is 
available. The averages of these intervals are included in the Table 1, 
for both cases and in two tests. 

The second test was developed after finishing the first one but 
without retraining the neural network. In both tests, the average 
delay associated to open the eyes are lower than the corresponding 
to close the eyes. This fact is related with the brain processes. After 
the subject has closed his eyes, the brain takes some time to syn-
chronize the neurons until the amplitude of alpha-signal increases. 
However, the inverse process of desynchronizing is faster. Because 
of that, the algorithm takes more time to identify that the eyes are 
closed than the eyes are opened.

Action Test 1 Test 2

Closing eyes 2.15 s 3.77 s
Opening eyes 1.72 s 3.02 s

Another relevant conclusion extracted from the obtained delays 
is the differences between the results of the two tests. As it has 
been exposed previously, the second test was carried out without 
retraining the neural network. So, the differences are caused by 
the signal received in the application. This variation of the signal 
can be caused by the losing of effectiveness in the electrode con-
nection. 
One explanation is the loosing of ultrasound gel, which is neces-
sary for reducing the noise in the communication between the 
brain and the electrode. Another possibility is that the brain signal 
generated during the training process is more similar to the signal 
generated in the first test than the one generated in the second, 
because they are nearer in time. This result is very interesting, be-
cause it opens the researching to determine how much time af-
ter the training process the network is valid, the algorithm stops 
working and a new training process is needed.

4.3. QUADROTOR BEHAVIOR

The behavior of the aircraft has been simulated for a unitary step 
input in the case of neglecting the signal noise, on one hand, and, in 
the other, the case of considering the noise associated to a typical 
ultrasound sensor.

The time in reaching the commanded height is around one second, 
with a maximum vertical speed of 1m/s approximately. In addition, 
the maximum overshoot is 17 cm, which is under the maximum 
admissible. On the other hand, the behaviour of the aircraft con-
sidering the noise is quite similar to the results reached neglecting 
it, fulfilling the initial criteria established for the autopilot design.

research article / artículo de investigación

Fig. 4: Confusion Matrix after 5 minutes training, being 0 the case of opened eyes 
and 1 closed eyes one.

Table 1: Average delays for two tests
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5. DISCUSSION AND CONCLUSIONS
The success rate of the classification obtained with the method-

ology presented in this study is adequate to the proposals of this 
research. The goal was to demonstrate that Neurofeedback tech-
nique can be carried out providing the feedback with a drone. The 
analysis of the alpha rhythm associated to the action of having the 
eyes opened or closed has been a perfect choice for demonstrating 
the viability of the technique. The behavior of this signal is expected 
to be like the concentration one, and the drone has been capable 
to change its flight hover height according to the level of the al-
pha-signal energy.

Going in depth into the procedure for carrying out this research, 
the strategy chosen for classifying the signals based on a combina-
tion of neural networks and Wavelet Transform is adequate for this 
proposal. The evolution of this work to Neurofeedback should start 
with this same strategy, especially for removing interferences of the 
signal and artifacts such as eyes blinking or heartbeat. Of course, as 
the signal is more complex, more difficult to be characterized and 
harder to learn for the neural network. Because of that, in future 
works, a deeper knowledge of the characteristics of the brain con-
centration signal is a key input for the success of this application to 
the treatment of ADHD. It is possible to consider the option of using 
information of several electrodes for a better characterization of the 
signal. Depending on the results of these advances, maybe a new 
neural network structure will be needed or different pre-processing 
filters.

Another issue to be studied in the future is the dependency on the 
test duration, because the ultrasound gel is progressively lost as the 
test evolves. This drawback can be solved by using a higher quality 
board than the one chosen for this study. In addition, a sensitive 
study for analyzing the best location of the electrode in order to 
maximize the success of the classification should be undertaken in 
future stages of this research. These two lines of future work will 
provide robustness to the application.

From the standpoint of the quadrotor, the autopilot developed in 
this study is very simple. It has allowed to demonstrate the viability 
of the connection and communication between the outputs of the 
classification process and the command inputs for the control of 
the drone. For an actual application, a whole autopilot needs to be 
developed, based on the complete tridimensional dynamic of the 
aircraft and based on the real output of the onboard sensors..   

The final step of the research will be to measure the success of the 
therapy itself. Once all these improvements are incorporated, it will 
be the moment to analyze if the expected results on the treatment 
of ADHD are good enough. For that, the application allows making 
the feedback more demanding using the capability of commanding 
intermediate altitudes, just by classifying into more categories asso-
ciated to several levels of concentration.
 

References
[1] Nam CS, Nijholt A, Lotte F. Brain-computer interfaces handbook : technological 

and theoretical advances. Boca Raton, FL: CRC Press; 2018.
[2] Berger H. Ueber das Elektrenkephalogramm des Menschen. Arch Für Psychiatr 

Und Nervenkrankhriten 1929;87:527–70.
[3] Kamiya J. Conscious control of brain waves. Psychol Today 1968;1:56–60.
[4] Murphy KP. Machine Learning: A Probabilistic Perspective. London, U.K.: The MIT 

Press; 2012.
[5] Nicolas-Alonso LF, Gomez-Gil J. Brain computer interfaces, a review. Sensors 

2012;12:1211–79. https://doi.org/10.3390/s120201211.
[6] Sitaram R, Ros T, Stoeckel L, Haller S, Scharnowski F, Lewis-Peacock J, et al. 

Closed-loop brain training: The science of neurofeedback. Nat Rev Neurosci 
2017;18:86–100. https://doi.org/10.1038/nrn.2016.164.

[7] Arns M, Ridder S de, Strehl U, Breteler M, Coenen A. Efficacy of Neuro-
feedback Treatment in ADHD: the Effects on Inattention, Impulsivity and Hy-
peractivity: a Meta-Analysis. Clin EEG Neurosci 2009;40:180–9. https://doi.
org/10.1177/155005940904000311.

[8] Mershin A, Thrasyvoulos K. Methods, Systems, and Apparatus For Self-Calibrat-
ing EEG Neurofeedback. US Patent 2016/0235324 A1, filed February 15, 2016, and 
issued August 18, 2016. US2016235324 (A1) ― 2016-08-18, 2016.

[9] Rodriguez-Bermudez G, Lopez-Belchi A, Girault A. Testing brain–computer in-
terfaces with airplane pilots under new motor imagery tasks. Int J Comput Intell Syst 
2019;12:937–46. https://doi.org/10.2991/ijcis.d.190806.001.

[10] Schneider C, Pereira M, Tonin L, Millán J del R. Real-time EEG feedback on alpha 
power lateralization leads to behavioral improvements in a covert attention task. 
Brain Topogr 2019:1–12. https://doi.org/10.1007/s10548-019-00725-9.

[11] Klimesch W, Sauseng P, Hanslmayr S. EEG alpha oscillations: The inhibi-
tion-timing hypothesis. Brain Res Rev 2007;53:63–88. https://doi.org/10.1016/j.
brainresrev.2006.06.003.

[12] OpenBCI Cyton. OpenBCI Documentation n.d. https://docs.openbci.com/Hard-
ware/02-Cyton (accessed July 30, 2019)

Acknowledgments
This research has received the support of Neuromottiva Center, 

through the contributions of Alberto J. Sanchez-Carmona, Jacobo 
Albert and Sara López-Martín. They gave us feedback and advice 
about the advances of the project, from psychological standpoint, 
and provide the Cyton board.

research article / artículo de investigación

55| ISSN-L:0012-7361| xxxx | Vol.  96 nº 2 | March 2021 | Dyna

Classification of brain signals for RPAS control in the treatment of attention deficit hyperactivity disorder
Alejandro Sanchez-Carmona, Carmelo-Javier Vil lanueva-Cañizares, Álvaro Gómez-Rodríguez,  

Luis García-Hernández y Cristina Cuerno-Rejado

Cod. 9496 | Aeronautical Engineering |  3301.99 Others


